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Circuit Function Characterizing
Tunability of Resonators

Alexander Zakharov and Michael Ilchenko , Senior Member, IEEE

Abstract— In this paper we study a sensitivity function of
resonance frequencies to capacitance change in resonators with
capacitive tuning, which characterizes the local tunability. This
function is a circuit function, similar to the input and transmis-
sion functions. The features of the sensitivity function, leading to
tunability increasing, are defined. The founded features are used
to construct resonators from segments of transmission lines with
an extended tuning range. The tunability limitations of resonators
tunable by one or several capacitors are determined. Synthesized
transmission line resonators can be used in tunable bandpass
filters. They allow the filter to be tuned over a wider frequency
range for a given capacitance change Cmax/Cmin. If the tuning
range is specified, the filter will perform the adjustment at a
lower ratio Cmax/Cmin. This leads to a smaller change in the
insertion loss of the filter in a given frequency range.

Index Terms— Tunable resonator, tenability limitations, circuit
function, input susceptance, critical frequencies.

I. INTRODUCTION

RECENTLY, interest in electrically tunable/reconfigurable
filters [1]–[6] has increased. Such filters are used in

diplexers [5], duplexers [6], and as standalone devices [7], [8].
Most of these filters contain resonators from segments

of transmission lines and variable capacitors as elements of
tuning. Semiconductor varactors [7]–[11] ferroelectric capac-
itors [12], [13], sets of lumped capacitors commutated by
MEMS switches [14] or pin diodes [15] are used as variable
capacitors. These resonators have a lot of resonant frequencies
ωn , n = 1, 2, . . .. Of practical interest is a tuning at one
resonance frequency ωn in a determined frequency band
ωn ∈ [ωn min, ωn max].

The frequency tunability of resonators is ability to change
the resonance frequency when capacitance is changed. The
tunability of the resonator in a frequency band is characterized
by the relationship between frequency ratio Kn = ωnmax/ωnmin
and the relative variation of the capacitance χ = Cmax/Cmin.
Increasing the tunability of resonators means increasing Kn for
specified value of χ or reducing χ for specified value of Kn .
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Fig. 1. Tunable resonator with a variable capacitance.

Since the values Kn and χ are not functions of the electrical
circuit, the problem of tunability increasing of resonator is
solved by enumerating the resonator parameters that improve
the relationship between Kn and χ , as was done in [10]. The
explanation of the obtained result is not given, as a rule. The
existing state is due to the fact that until now there is no
circuit function (similar to input or transfer function), which
directly expresses the tunability of resonators. We introduce
a circuit function characterizing the tunability and study its
properties in this paper. For this purpose, we use elements
of the sensitivity theory [16]–[19], which has proved itself
in many applications. Based on this function we synthesize
several versions of resonators with improved tunability and
also establish theoretical limitations on tunability of resonators
with one and several capacitances.

II. SENSITIVITY FUNCTION AND ITS PROPERTIES

Let us consider a tunable resonator (Fig. 1) consisting of a
one-port network wite capacitance C is connected. The one-
port network can contain distributed and lumped elements.
When the capacitance changes, the resonance frequencies of
the resonator ωn , n = 1, 2, . . . , change as well. They are the
roots of the resonance equation

B̃ (ω) = B (ω) + ωC = 0, (1)

where B(ω) is input susceptance of a one-port network, B̃ (ω)
is input susceptance of the resonator.

A positive definite value

Sc = − dω/ω

dC/C

∣∣∣∣
ω=ωn

= − d ln ω

d ln C

∣∣∣∣
ω=ωn

(2)

is the sensitivity of the resonance frequencies ωn to capaci-
tance C changing. It is defined in the region of negative values
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Fig. 2. Tunable combline resonator. (a) Schematic. (b) Function Sc(θ).

of B(ω), where (1) has solutions. Using resonance equation (1)
we can express the sensitivity Sc (2) through input susceptance
B(ω)

Sc =
(

1 − d B

dω
/

B

ω

)−1
∣∣∣∣∣
ω=ωn

, B ≤ 0 (3)

If function B(ω) is given by its zeros ω0 i and poles ωpi ,
i = 1, 2, …(these frequencies are also called critical)

B (ω) = −H

(
ω2

01 − ω2
) (

ω2
02 − ω2

)
...

ω
(
ω2

p1 − ω2
) (

ω2
p2 − ω2

)
...

, (4)

then the sensitivity is expressed through these critical frequen-
cies

Sc (ω) = 1

2

[
1 −

∑
i

1

1−(ω0i/ω)2 +
∑

i

1

1 − (
ωpi/ω

)2

]−1

,

(5)

which follows from (3), (4). Here H is a constant value, called
conductivity coefficient, which has no effect on sensitivity
Sc. The applicability of sensitivity Sc is due to the fact that
Sc is circuit function, in contrast to the values K and χ .
It contains information about properties of a circuit and it can
be determined by changing critical frequencies ω0 i and ωpi .

A combline resonator is used most widely in varactor-tuned
filters [Fig. 2(a)]. The input susceptance of its line segment

B(ω) = −Z−1
0 cotθ,

where Z0 is the characteristic impedance, θ = ωL/v is the
electric length, L is the length of the segment, and v is the
propagation speed of electromagnetic wave. Substitution of
this expression in (3) leads to the sensitivity function of this
resonator

Sc (θ) =
(

1 + 2θ

sin 2θ

)−1

, Sc (θ) ≥ 0. (6)

The graph of the sensitivity function (6) for the first three
oscillations is shown in Fig. 2(b). The abscissa is the electric
length normalized to 90◦.

Fig. 3. Tunable resonator with open end. (a) Schematic. (b) Function Sc(θ).

A resonator shown in Fig. 3(a) also uses as a tunable one.
One end of the resonator is open. The input susceptance B(ω)
is expressed by the formula B(ω)Z−1

0 tan θ . Substitution of this
formula into (3) gives the sensitivity function of this resonator

Sc (θ) =
(

1 − 2θ

sin 2θ

)−1

, Sc (θ) ≥ 0. (7)

The graph of the function Sc (7) for the first two oscillations
is shown in Fig. 3(b).

A positive-definite circuit function Sc(ω) is characterized
by the following properties:

– the coincidence of the zeros of the sensitivity function
with the internal critical frequencies of the function B(ω);

– the strict convexity of the function Sc(ω) between its
zeros.

The sensitivity Sc characterizes the local tunability of the
resonator. At the same time, it connects the values K and χ .
If the sensitivity change in the tuning band from ωnmin to
ωnmax = Kωnmin is known, then

ln χ =
Kωn min∫
ωn min

d ln ω

Sc (ω)
(8)

which follows immediately from definition (2). Expression (8)
shows that an increasing Sc in a tuning band leads to decreas-
ing of χ for defined value of K .

It is widely known that tunability of a combline resonator
at a main resonance frequency ω1 increases when an electrical
length of the resonator decreases. This fact is explained by the
function Sc [Fig. 2(b)]. The sensitivity function increases with
decreasing θ up to the value of 1/2. For a resonator with an
open end, the function Sc at ω1 has a maximum [Fig. 3(b)].
For more effective tuning this maximum should be situated in
the middle of the tuning range.

It is important to note that the sensitivity function Sc (5)
depends only on the critical frequencies. It does not depend
on the level of input susceptance H (4) and on capacitance C .
This feature is retained when transmission line resonators
are used. In this case, the function Sc does not depend on
capacitance C and characteristic impedance Z0. It depends
only on the electrical length θ of the transmission line seg-
ment (6), (7). Three main values Z0, C , and θ are used for
design of a tunable resonator. Due to the existing feature of Sc
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function, the electrical length θ is determined first. The values
of Z0 and C are determined secondarily. For this, based
on the resonance equations of the resonators shown in the
Fig. 2(a) and Fig. 3(a), we write down at the upper frequency
of the tuning range ω1max as Z0Cmin = ω−1

1maxcot(θ1max) and
Z0Cmin = −ω−1

1max tan(θ1max), respectively. The right side of
these equalities is a positive number. We denote it by A
and write these equations in a single form Z0Cmin = A.
This representation shows that the values of Z0 and Cmin are
mathematically equal rights. In addition, they are inversely
proportional to each other, increasing the value of Z0 leads to
a decrease in the value of Cmin, and vice versa. The choice of
Z0 and Cmin values is somewhat arbitrary. This choice is made
by designer, and the main factor in choosing is the equality
of the product of Z0 and Cmin values to the number of A.
The electrical length θ is determined first by the condition of
obtaining the highest possible sensitivity Sc. This is equivalent
to minimizing the relative capacitance change χ = Cmax/Cmin.
Therefore, the starting point of the design is the minimization
of the value χ .

III. TUNABILITY LIMITATION OF RESONATORS

The use of the sensitivity function Sc(ω) allows us to
determine the tunability limitation of resonators in general
terms. We consider some different cases.

A. Resonator Without Losses With One Capacitance

If the sensitivity is constant [Sc(ω) = S0 = const] in the
tuning band, then from (8) it follows χ = K 1/S0

n or Kn = χ S0 .
The last equality makes it obvious that the maximum value of
the sensitivity function Scmax in the tuning band limits the
frequency ratio Kn :

Kn ≤ χ(Sc)max (9)

The input conductance of a lossless one-port network B(ω)
is a reactance function. The fundamental property of a lossless
one-port network is expressed by the inequality [20]

d B

dω
≥ |B|

ω
. (10)

Inequality (10) and definition (3) lead to an important property
of the function Sc(ω) of the resonator without losses —
limitation of this function on all frequency axis

Sc(ω) ≤ 1/2. (11)

In addition, (11) and (9) lead to limitation of the frequency
ratio

Kn ≤ √
χ. (12)

Limitations (11) and (12) are fulfilled with an equal sign
only in the case when a tunable resonator is a lumped LC
circuit.

B. Resonator Without Losses With Several Capacitances

Initially we consider a one-port network (Fig. 1), which
contains lumped inductances of constant value and m vari-
able capacitances: C1, C2, . . . , Cm . Without loss of generality,
we shall consider the lowest resonance frequency ω1, which
depends on these capacitances

ω1 = ω1(C1, C2, . . . , Cm). (13)

The function (13) is a homogeneous function of the variables
Ci , i = 1, 2, . . . , m, of degree (− 1/2):

ω1 (χC1, χC2, . . . , χCm) = χ−1/2ω1 (C1, C2, . . . , Cm) ;
(14)

m∑
i=1

Ci
∂ω1

∂C1
= −1

2
ω1. (15)

In particular, we have ω1(C) = const · C−1/2 for single
LC circuit, where const = L−1/2. In this case expressions
(14) and (15) become obvious ω1(χC) = χ−1/2ω1(C)
andC(dω1/dC) == −(1/2)ω1. Definitions (14) and (15)
of a homogeneous function of degree (− 1/2) are equal.
Equation (14) means that increasing of all capacitances by
χ times is accompanied by decreasing of ω1 by

√
χ times.

Formula (15) expresses the Euler theorem on homogeneous
functions [21]. After dividing both sides of (15) by (− ω1)
we obtain

m∑
i=1

Sci = 1/2 (16)

where Sci is sensitivity of resonance frequency ω1 to change
of capacitance Ci (2). Expression (16) is known [16], [17] as
invariant of sensitivity ω1 to the change of all capacitances of
a lumped LC circuit. It shows that the sum of all sensitivities
Sci of a lumped circuit without losses is 1/2 and this sum is
invariant with respect to the structure of circuit. Equation (16)
expresses the mutual dependence of sensitivities, which is one
of the fundamental properties of such circuits. The increase
in one sensitivity is accompanied by a decrease in other
sensitivities, but their sum remains constant.

If several inductances are added to the initial circuit, then the
character of the function (13) does not change. It will still be a
homogeneous function of degree (– 1/2) and satisfy conditions
(14)–(16). However, if several constant capacitances are added
to the initial circuit (let their total number become equal to M),
then (16) goes to the inequality

m∑
i=1

Sci ≤ 1/2, (17)

(since the number of variable capacitances is m < M on
which the summation is carried out), then the restriction for
the frequency ratio will take the form

K ≤ √
χmax (18)

where χmax is the largest value among χ1, χ2, . . . , χm .
A circuit with distributed parameters without losses can

be regarded as the limiting case of a lumped LC circuit,
when the number of elements tends to infinity. Adding a
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distributed element (several elements) to initial lumped circuit
is equivalent to connect an infinite number of lumped constant
capacitances and inductances. Therefore, the limitations of
tunability (17), (18) also apply to distributed-lumped circuits
without losses, which are tuned by several capacitors. The
limitations of tunability of resonators with several variable
capacitances (17), (18) and with one variable capacitance
(11), (12) coincide. This means that you can not significantly
increase the tunability by increasing the number of variable
capacitances. This position was confirmed in [9], where the
resonator was tuned by three varactors.

In the varactor-tuned bandbass filter [3] microstrip transmis-
sion line resonators were used. For tuning in the frequency
range of 225-400 MHz (K = 1.778), one varactor was
used in each resonator, the capacitance of which changed in
χ = 3.78 times. The Sc values were quite large 0.402 ≤ Sc ≤
0.470. The use of additional varactors will slightly reduce
the value of χ . This suggests that it is not advisable to use
additional varactors in the case of high value Sc.

C. Influence of Dissipative Losses

In the presence of losses, the resonant frequencies of
resonators will be determined by two conditions

B̃ (ω) = B (ω) + ωC = 0

d B̃

dω

∣∣∣∣∣
ω=ωn

= C + d B

dω

∣∣∣∣
ω=ωn

≥ 0 (19)

where functions B̃ (ω) and B (ω) are no longer reactance
functions. They are imaginary parts of the corresponding
input admittance Ỹ (ω) and Y (ω). The first of conditions
(19) coincides with the resonance condition for the case
without loss (1), but its solution gives a large number of
zeros on frequency axis. Some of these zeros are not resonant
frequencies, since the function B̃ (ω) at these frequencies has
a negative slope. The second of conditions (19) chooses those
zeros where function B̃ (ω) has a positive slope and they
are resonant frequencies. When losses are absent, the second
of conditions (19) is redundant, since the slope of the input
susceptance is always positive.

Since the first of resonance conditions (19) gives C =
−B/ω the second of conditions (19) is equivalent to the
inequality

d B

dω
≥ |B|

ω

∣∣∣∣
ω=ωn

.

This inequality coincides with inequality (10) for the input
susceptance, which led to the limitation of tunability (11), (12).
The same inequalities hold also for resonators with losses.
Therefore, the idea to increase the tunability of resonators due
to the artificial adding of losses in them has no real basis.

As a rule, the operating frequencies of a resonator with
fixed tuning are located in the frequency band with a relative
attenuation level of −3 dB. The smaller the unloaded Qu

of the resonator, the wider this band. In view of above,
if the resonator is tuning in the frequency range from ωmin to
ωmax, then the operating frequency range should be considered
extended. However, this effect is not significant.

Fig. 4. Dependence of function Sc(ω) on the location of critical frequencies:
1) ω01 → 0, ωp2 → ∞; 2) ω01 → ωp1, ωp2 → ∞; 3) ωp2 → ω02,
ω01 → 0; 4) ω01 → ωp1, ωp2 → ω02.

IV. WAYS OF Sc INCREASING

Since Sc(ω) is a circuit function a natural question arises.
How to increase Sc(ω) due to a special distribution of critical
frequencies ω0 i , ωpi ?

On the example of the function Sc(ω) determined by critical
frequencies ω01, ωp1, ω02, ωp2 (Fig. 4), we consider the
possibility of increasing the sensitivity at the second resonant
frequency ω2 ∈[ωp1, ω02]. Obviously, that increasing of
frequency interval [ωp1, ω02], i.e. expansion of the reso-
nance region, will lead to increasing in the values of Sc(ω).
Fig. 4 illustrates the effect of critical frequencies ω01 and ωp2
located to the left and right of the resonance region. In the
case under consideration, the sensitivity function (5) contains
four critical frequencies ω01, ωp1, ω02, ωp2.

Curve 1 in Fig. 4 corresponds to the location of the critical
frequencies ω01 → 0, ωp2 → ∞. In this case the sensitivity
takes the smallest values. Curve 2 was obtained at ωp2 → ω02,
ω01 → 0 and curve 3 corresponds to ω01 → ωp1, ωp2 → ∞.
Oncoming to frequency interval [ωp1, ω02] of only one critical
frequency increases Sc(ω) in the region shifted towards this
frequency. If two critical frequencies ω01 and ωp2 are closing
to interval [ωp1, ω02] simultaneously, then the sensitivity
Sc(ω) in this interval will increase substantially (curve 4 in
Fig. 4).

As we can see above, the most wideband resonator is a
lumped LC circuit. In this case the limitations (11) and (12)
are fulfilled with an equal sign. Then the input susceptance
(4) is the inductance conductivity

B (ω) = − H

ω
, (20	)

where H = 1/L. According to (2), this inductance conductivity
corresponds to the sensitivity function equal to 1/2 on the
entire frequency axis

Sc(ω) = 1/2. (20		)

The function (20	) has no internal critical frequencies. It has
a pole at zero frequency and zero at infinity.

The question arises could we build a circuit whose input
susceptance B(ω) contains internal critical frequencies (4)
with sensitivity (5) close to 1/2 on the entire frequency axis.
Using the analysis results presented in Fig. 4 we construct the
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function B(ω) as follows. Let all internal poles ωpi of the
function differ from zeros ω0 i by a small positive value ε:
ωpi − ω0 i = ε. The function has a pole at zero frequency
and a zero at infinity. An example of such a function is
shown in Fig. 5(a), where the dotted line shows the inductance
conductivity (20	). At ε → 0 we obtain the idealized function
B∗(ω), whose module can be represented as∣∣B∗ (ω)

∣∣ = H

ω
+

∑
i

δ
(
ω − ωpi

)
, (21	)

where δ(ω − ωpi ) is the delta-Dirac function [21]. The ide-
alized function B∗(ω) differs from the inductance conductiv-
ity (20	) by the presence of discontinuities of the second kind,
where it takes the values ± ∞. The idealized input suscep-
tance (21	) corresponds to the idealized sensitivity function

S∗
c (ω) =

{
1/2 at ω �= ωpi

0 at ω = ωpi .
(21		)

The function (21		) is shown in Fig. 5(b). The input reac-
tance X (ω) = −1/B(ω) corresponds to the input susceptance
B(ω) with pairwise close critical frequencies. The zeros
ω	

0 i and poles ω	
pi of this function are also pairwise close.

An example of a such function is presented in Fig. 5(c), where
the dotted line shows the inductance reactance X (ω) == Lω.
Extremely closing the critical frequencies ω	

0 i and ω	
pi to each

other we obtain an idealized input reactance X∗(ω), whose
modulus can be represented as∣∣X∗ (ω)

∣∣ = Hω +
∑

i

δ
(
ω − ω	

pi

)
.

This idealized function differs from the reactance of induc-
tance by the presence of discontinuities of the second kind,
where it takes the values of ±∞. The graphs in Fig. 5(a) and
Fig. 5(c) illustrate the input susceptance and input reactance
with pairwise close critical frequencies.

Let us give a qualitative interpretation of the result presented
in Fig. 5. Expression (5) shows that the pairwise convergence
of the zeros and the adjacent right-hand poles of the function
B(ω) bring mutual compensation of their influence on the
sensitivity function S(ω) of the circuit. The influence of the
pole and zero located at the origin and at infinity remains
uncompensated. As a result, a sensitivity close to inductance
is provided. This way of tunability increasing can be called
the method of mutual compensation of zeroes and poles of
input susceptance.

We illustrate this method by the example of a quarter-wave
resonator with a length L and characteristic impedance Z0
[Fig. 6(a)]. The variable capacitance C is connected to the
point that is located at the distance l from the short-circuited
end of the resonator. At the connection point of the capacitance
the input susceptance is determined by the expression:

B(ω) = Z -1
0 {−cot (ωl/v) + tan[ω(L − l)/v]} (22)

where v is the electromagnetic wave propagation velocity. The
graph of function (22) is shown in Fig. 6(b) at l = L/10.
The smaller distance l, the closer zeros ω0 i and poles ωpi

are to each other. The tunability of resonator in Fig. 6(a) is

Fig. 5. Characteristic graphs of circuit functions: (a) Input susceptance
B(ω) with pairwise close critical frequencies. (b) Idealized sensitivity function
S∗

c (ω). (c) Input reactance c(ω) with pairwise close critical frequencies.

higher than that of a resonator with a traditional capacitance
connection [Fig. 2(a)], which is tuning in the region of
electrical lengths θ = 60◦ - 75◦ when capacitance C changes
7.61 times. Using calculations based on (22), it was established
that the resonator [Fig. 6(a)] at l = L/10 is tuning in the
region of the same electrical lengths when the capacitance
C changes 4.13 times. However, this significantly increases
the minimum value of the capacitance Cmin. This increasing
may be useful at very high frequencies, where the minimum
value of capacitance C may be extremely small, for example,
Cmin = 0.1 pF. Moving the connection point of capacitance C
towards the short-circuited end of the resonator increases the
value of Cmin.

Each resonant frequency ωi can change only within its own
resonant region, which is limited by zero ω0 i and left adjacent



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 6. Implementation example of the mutual compensation method of zeros
and poles of input susceptance: (a) Resonator circuit. (b) Input susceptance
at the point of connecting the capacitor to the resonator for l = L/10.

pole ωp(i−1) of input susceptance B(ω). The expansion of
the resonance region is accompanied by an increase in sen-
sitivity Sc and frequency range at the corresponding resonant
frequency.

When design tunable resonators it is necessary to use both
ways of tunability increasing. It is expansion of resonance
region and using of the method of mutual compensation of
zeros and poles of the input susceptance B(ω).

V. RESONATORS WITH IMPROVED TUNABILITY

The above features of the critical frequencies location of
the functions Sc(ω) and the input susceptance Y ( jω) = jB(ω)
were used to construct resonators with improved tunability.
These resonators are presented in Table 1. They are stepped-
impedance resonators with electric length θ consisting of N
segments of the same length θ 	 = θ /N . The characteristic
impedances of composite segments have only two values,
the minimum Z0 and the maximum mZ0, m > 1. The arrow
shows the input of each resonator to which the variable capac-
itance is connected. Resonators No. 1 and No. 2 are designed
for tuning the first (fundamental) resonant frequency ω1. With
the help of resonators No. 3 and No. 4 the second resonance
frequency ω2 is tuning. Table 1 also shows the location of the
critical frequencies of these resonators, providing improved
tunability. They include both the expansion of a resonance
region and closing of neighboring critical frequencies to it.

At the Richards frequency variable [22]

S = j� = j tan θ 	 (23)

the transfer matrix of stepped-impedance resonators is written
in the form [23]∣∣∣∣ A B

C D

∣∣∣∣ =
(

1 − S2
)−N/2

×
∣∣∣∣ a0+a2S2+. . .+aN SN a1S+a3S3+. . .+aN−1SN−1

b1S+b3S3+. . .+bN−1SN−1 b0+b2S2+. . .+bN SN

∣∣∣∣
(24)

where N is even number. When N is odd, the higher powers of
the polynomials are interchanged, a0 = b0 = 1. The remaining
coefficients of the polynomials are positive numbers that
depend on characteristic impedances Z0 i , i = 1, 2, . . . , N .
The input susceptance of N-stage resonator is described by
the reactance function of variable S (23) of degree N . If a
resonator is open at the ends, then from (24) we get

Y N (S) = C

A
= a0 + a2S2 + . . . + aN SN−1

b1S + b3S3 + . . . + bN−1SN
(25a)

= H
S

(
S2+�2

01

)(
S2+�2

02

)
. . .

(
S2 + �2

0 (N−2)/2

)
(

S2+�2
p1

) (
S2+�2

p2

)
. . .

(
S2+�2

p N/2

)
(25b)

where H is the conductivity coefficient, �0 j and �pj are
critical frequencies at the axis j�. If a resonator is short at
the end, then Y N (S) = D/B and even and odd polynomials
in (25a), (25b) are interchanged. Table II shows the input
susceptance of the resonators from Table I and the ratios of
their critical frequencies as a function of m. They can be useful
in the calculation and evaluation of the achieved effect. The
value ωo

01 of resonator No. 1 is the zero of input susceptance
when a resonator is uniform (m = 1). At this frequency we
have θ◦

01 == 90◦. At m = 3 the ratio ω01/ω◦
01 = 1.33, which

indicates an extension of the resonant region by 1.33 times.
Its right boundary θ◦

01 = 90◦ is increased up to θ01 = 120◦.
At m = 5 the ratio ω01/ω◦

01 = 1.46, which indicates an
increasing of the right boundary up to θ01 = 131.8◦. The
resonator No. 2 at m == 1 is a half-wave resonator with
critical frequency ratio ω01/ωp1 = 2. At m = 3 we have
ω01/ωp1 = 3.37 and for m = 5 we obtain ω01/ωp1 =
4.36, which indicates a significant expansion of the resonance
region.

We note that the expansion effect of the resonant region
of resonator No. 1 is maximal when the electrical lengths of
two segments with high and low characteristic impedance are
equal. If this ratio is changed, the resonance region becomes
narrower. For resonator No. 2 the maximum expansion effect
of the resonant region occurs when the ratio of the electrical
lengths of composite segments is equal to the value that shown
in Table 1.

The substitution of the input susceptance of resonator No. 1
(Table 1) into (3) leads to its sensitivity function

Sc =
[

1 + θ
(

1 + �2
)(

1

�
+ 2�

m − �2

)]−1

(26)

where � = tan(θ /2). The function (26) is shown in Fig. 7 for
m = 3 and m = 1 (uniform resonator). For m = 3
the function Sc increases due to expansion of the resonance
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TABLE I

TUNABLE RESONATORS AND ITS CRITICAL FREQUENCIES

TABLE II

INPUT SUSCEPTANCE AND RATIO OF THE CRITICAL FREQUENCIES OF TUNABLE RESONATORS

Fig. 7. Function Sc(θ) of resonator No. 1.

region. It becomes equal to zero for θ01 = 120◦. The graphs
in Fig. 7 show that advantage of stepped-impedance resonator
No. 1 increases when tuning in the region with increased
electrical lengths. Let us illustrate this for the typical value
χ = Cmax/Cmin = 2.2 for ferroelectric capacitors.

To characterize the frequency adjustment, in practice, the
fractional tuning range (FTR) is often used, expressed in
percent:

FT R = 2(θnmax − −θnmin)/(θnmax + θnmin)

= 2(Kn − −1)/(Kn + 1).

The FTR values for different electrical lengths of resonator
No. 1 are shown in Table III for m = 3 and m = 1. These
values are determined directly from the resonance equation
(1). The quantitative evaluation of this advantage is given
in Table III as FTR ratio.

The substitution of input susceptance of resonator No. 2
(Table 1) into (3) gives its sensitivity function

Sc =
[

1 − θ
(

1 + �2
)(

2a�

1 − a�2 + 3�2 − a

�3 − a

)]−1

(27)

where � = tan(θ /3), a = 2 m + 1.
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TABLE III

TUNING BANDWIDTH OF RESONATOR NO. 1 AT χ = 2.2 FOR m = 3 AND m = 1

Fig. 8. Function Sc(θ) of resonator No. 2.

The function (27) is shown in Fig. 8 for m = 3 and m = 1
and it has a bell-shaped character. In view of this, the resonator
has an optimal tuning band, within which the tuning is most
effective. At m = 1 the maximum of the function Scmax =
0.178 is achieved for electric length θ = 129◦, which is located
in the middle of this band. Using resonance equation (1) we
establish that for χ = 2.2 this band is located in the region
of electric lengths of 120◦ ≤ θ ≤ 137.9◦ and its FTR ==
13.86%. At m = 3 the function Sc increases due to expansion
of the resonance region and closing of neighboring critical
frequencies to it. The maximum of the function Scmax = 0.29
is achieved for the electric length θ = 118◦. At χ = 2.2
the most effective tuning takes place in the region of electric
lengths 110◦ ≤ θ ≤ 137.7◦, that corresponds to FTR =
22.36%.

The tuning range is increased 1.61 times in comparison with
a nonuniform resonator, for which m = 1. As the parameter
m increases, the sensitivity function Sc and tuning range of
considered stepped-impedance resonators increase as well.

Quarter-wave stepped-impedance resonator (No. 1 in
Table I) is not only one that has an increased bandwidth at the
main resonant frequency ω1. Fig. 9 shows resonators, which
are equivalent at the frequency ω1 for the certain capacitances.
Their equivalence is due to the fact that at the frequency ω1
their resonance equations coincide. Taken in Fig. 9 notation
requires no explanation. Note that at the frequency of the
next resonance ω2 these resonators are not equivalent, since
their resonance equations differ from each other. Practical use
given in Fig. 9 resonators is determined by their individual
properties. Thus, the resonator [Fig. 9(d)] uses twice value
2C of capacitance. In addition, this resonator has an increased
length, which is a positive factor at high frequencies.

Fig. 9. Resonators with the same tuning range at the main resonant frequency
as the quarter-wave SIR: (a) Initial resonator. (b) Symmetric resonator with
two capacitors. (c) Loop hairpin resonator. (d) Symmetric resonator with
parallel capacitor. (e) Symmetric resonator with series capacitor.

Half-wave stepped-impedance resonator (No. 2 in Table I)
is also not only one with increased bandwidth at the main
resonant frequency ω1. Fig. 10 shows resonators, which are
equivalent at the frequency ω1 for the certain capacitances.
Taken in Fig. 10 notation requires no explanation. At the same
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Fig. 10. Resonators with the same range tuning at the main resonant
frequency as the half-wave SIR: (a) Initial resonator. (b) Symmetric resonator
with parallel capacitor. (c) Symmetric resonator with series capacitor.

time, these resonators are not equivalent at the next resonant
frequency ω2.

The tunable resonator similar to No. 1 was obtained in
[10] by EM simulation and step-by-step changing of the
ratio between composite lengths of the stepped-impedance
resonator. The reason of the tunability increasing of this
resonator was not discussed. In work [11] stepped-impedance
resonators, shown in Fig. 10(b) and Fig. 10(c), were used. The
constructing process of this resonator was not considered. The
data [10], [11] indicate the reliability of the results presented
in this article.

The resonators No. 3 and No. 4 (Table I and Table II)
use the second resonant frequency ω2. This allows us to use
the higher electrical lengths of resonators, which is useful for
shorter wavelengths, namely, millimeter. An analysis of these
resonators can be carried out in the sequence discussed above.

Table 1 and Fig. 9, Fig. 10 show stepped-impedance res-
onators with improved tunability. They implement the estab-
lished features of the critical frequencies location of function
B(ω). An important design parameter of these resonators is
m = Z0max/Z0min. For stripline and microstrip structures the
parameter m is limited to the value of m ≈ 5. In our opinion,
the use of distributed stubs circuits [24] is very promising for
realization of special arrangement of critical frequencies.

VI. REGULARITIES OF TUNABLE RESONATORS

Note general patterns of tunable resonators, which become
apparent when using the sensitivity function Sc (3), (5).

1. Tunable at main resonant frequency resonators with input
susceptance B (4), having a pole at zero frequency, have higher
frequency range than resonators with input susceptance having

zero at zero frequency. This is explained by the differences in
their sensitivity functions Sc(ω), which are shown in Fig. 2 and
Fig. 3, respectively.

2. When the electrical length of resonators with input
susceptance B(ω), having a pole at zero frequency [Fig. 2(b)],
decreases, the sensitivity Sc approaches 1/2, and their fre-
quency range tends to the LC circuit. Frequency range com-
parison of such resonators correctly carried out with the same
electrical lengths.

3. The sensitivity function Sc(ω) of resonators with input
susceptance B(ω), which has zero at zero frequency, has a bell-
shaped character at the main resonant frequency [Fig. 3(b)].
Such resonators are characterized by an “optimal” tuning band,
in the middle of which the maximum of function Sc(ω) is
located. Frequency range comparison of such resonators can
be performed with different electrical lengths from each other.

4. If a resonator with a single variable capacitance has
not enough high sensitivity Sc and tunability, then they can
be improved by using an additional variable capacitance. For
example, a resonator with single variable capacitance (Fig. 8)
has a maximum sensitivity Scmax = 0.29. Using the second
variable capacitance and the transition to resonator [Fig. 9(b)]
increases the maximum sensitivity value to 1/2 and improves
tunability.

5. If the sensitivity Sc(ω) of a resonator with single variable
capacitance is high enough [3], then the use of additional
variable capacitances can not lead to any significant increase
in tunability. This is indicated by inequalities (17), (18).

6. The adding of dissipative losses into resonator is not a
means of increasing its frequency range, since the restrictions
(11), (12) are valid in this case as well.

VII. CONCLUSION

The introduced sensitivity function Sc(ω) is a circuit func-
tion with the same critical frequencies as the input suscep-
tance. It allows us to determine the location of the critical
frequencies, which increase the tunability of resonators with
variable capacitance. These features are realized in the class
of a distributed circuit, which resulted in the resonators No. 1
— No. 4 in Table I, as well as to the resonators shown
in Fig. 9 and Fig. 10. The use of Sc(ω) function made
it possible to formulate recommendations for design and
comparison of tunable resonators. Since the function Sc(ω)
is a circuit function, it was used to established the tunability
limitation for different cases. We found that in many cases
the use of additional variable capacitances cannot lead to a
significant improvement in the resonator tunability.

Synthesized transmission line resonators are stepped-
impedance resonators. Possibilities to implement different
functions of sensitivity Sc(ω) using distributed circuits of this
type are limited by the design parameter m = Z0max/Z0min.
Distributed circuits of a stubs structure could have a wider
range of possibilities when implementing various Sc(ω).
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